1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486
// Copyright 2020 The Tink-Rust Authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // //////////////////////////////////////////////////////////////////////////////// //! Provide a reusable streaming AEAD framework. //! //! It tackles the segment handling portions of the nonce based online //! encryption scheme proposed in "Online Authenticated-Encryption and its //! Nonce-Reuse Misuse-Resistance" by Hoang, Reyhanitabar, Rogaway and Vizár //! (https://eprint.iacr.org/2015/189.pdf). //! //! In this scheme, the format of a ciphertext is: //! //! header || segment_0 || segment_1 || ... || segment_k. //! //! The format of header is: //! //! header_length || salt || nonce_prefix //! //! header_length is 1 byte which documents the size of the header and can be //! obtained via header_length(). In principle, header_length is redundant //! information, since the length of the header can be determined from the key //! size. //! //! salt is a salt used in the key derivation. //! //! nonce_prefix is a prefix for all per-segment nonces. //! //! segment_i is the i-th segment of the ciphertext. The size of segment_1 .. //! segment_{k-1} is ciphertextSegmentSize. segment_0 is shorter, so that //! segment_0 plus additional data of size firstCiphertextSegmentOffset (e.g. //! the header) aligns with ciphertextSegmentSize. //! //! The first segment size will be: //! //! ciphertext_segment_size - header_length() - first_ciphertext_segment_offset. use std::{convert::TryFrom, io}; use tink_core::{utils::wrap_err, EncryptingWrite, TinkError}; /// `SegmentEncrypter` facilitates implementing various streaming AEAD encryption modes. pub trait SegmentEncrypter { fn encrypt_segment(&self, segment: &[u8], nonce: &[u8]) -> Result<Vec<u8>, TinkError>; } // `Writer` provides a framework for ingesting plaintext data and // writing encrypted data to the wrapped [`io::Write`]. The scheme used for // encrypting segments is specified by providing a `SegmentEncrypter` // implementation. pub struct Writer { w: Box<dyn io::Write>, segment_encrypter: Box<dyn SegmentEncrypter>, encrypted_segment_cnt: u64, first_ciphertext_segment_offset: usize, nonce_size: usize, nonce_prefix: Vec<u8>, // Buffer to hold incomplete segments of plaintext, until they are complete and // ready for encryption. plaintext: Vec<u8>, // Next free position in `plaintext`. plaintext_pos: usize, // A final smaller segment can be written by calling `close()`, but after that // no more data can be written. closed: bool, } /// `WriterParams` contains the options for instantiating a `Writer` via `Writer::new()`. pub struct WriterParams { // `w` is the underlying writer being wrapped. pub w: Box<dyn io::Write>, // `segment_encrypter` provides a method for encrypting segments. pub segment_encrypter: Box<dyn SegmentEncrypter>, // `nonce_size` is the length of generated nonces. It must be at least 5 + // `nonce_prefix.len()`. It can be longer, but longer nonces introduce more // overhead in the resultant ciphertext. pub nonce_size: usize, // `nonce_prefix` is a constant that all nonces throughout the ciphertext will // start with. Its length must be at least 5 bytes shorter than `nonce_size`. pub nonce_prefix: Vec<u8>, // The size of the segments which the plaintext will be split into. pub plaintext_segment_size: usize, // `first_ciphertex_segment_offset` indicates where the ciphertext should begin in // `w`. This allows for the existence of overhead in the stream unrelated to // this encryption scheme. pub first_ciphertext_segment_offset: usize, } impl Writer { /// Create a new Writer instance. pub fn new(params: WriterParams) -> Result<Writer, TinkError> { if params.nonce_size - params.nonce_prefix.len() < 5 { return Err("nonce size too short".into()); } let ct_size = params.plaintext_segment_size + params.nonce_size; match ct_size.checked_sub(params.first_ciphertext_segment_offset) { None => { return Err( "first ciphertext segment offset bigger than ciphertext segment size".into(), ) } Some(sz) if sz <= params.nonce_size => { return Err("first ciphertext segment not large enough for full nonce".into()) } _ => {} } Ok(Writer { w: params.w, segment_encrypter: params.segment_encrypter, encrypted_segment_cnt: 0, first_ciphertext_segment_offset: params.first_ciphertext_segment_offset, nonce_size: params.nonce_size, nonce_prefix: params.nonce_prefix, plaintext: vec![0; params.plaintext_segment_size], plaintext_pos: 0, closed: false, }) } } impl io::Write for Writer { fn write(&mut self, buf: &[u8]) -> io::Result<usize> { if self.closed { return Err(io::Error::new( io::ErrorKind::InvalidInput, "write on closed writer", )); } let mut pos = 0; // read position in input plaintext (`buf`) loop { // Move a chunk of the input plaintext into the internal buffer. let mut pt_lim = self.plaintext.len(); if self.encrypted_segment_cnt == 0 { pt_lim -= self.first_ciphertext_segment_offset } let n = std::cmp::min(pt_lim - self.plaintext_pos, buf.len() - pos); self.plaintext[self.plaintext_pos..self.plaintext_pos + n] .copy_from_slice(&buf[pos..pos + n]); self.plaintext_pos += n; pos += n; if pos == buf.len() { // All of the input plaintext has been consumed, but some (less than a segment's // worth) may be still be pending-encryption, held in // `self.plaintext`. It will be emitted on another `write()` (or by // `close()`). break; } // At this point there is a full segment's worth of plaintext in // `self.plaintext[..pt_lim]`, ready to encrypt and write out. if self.plaintext_pos != pt_lim { return Err(io::Error::new( io::ErrorKind::Other, format!( "internal error: pos={} != pt_lim={}", self.plaintext_pos, pt_lim ), )); } let nonce = generate_segment_nonce( self.nonce_size, &self.nonce_prefix, self.encrypted_segment_cnt, /* last= */ false, )?; let ciphertext = self .segment_encrypter .encrypt_segment(&self.plaintext[..pt_lim], &nonce) .map_err(|e| io::Error::new(io::ErrorKind::InvalidInput, format!("{:?}", e)))?; self.w.write_all(&ciphertext)?; // Ready to accumulate next segment. self.plaintext_pos = 0; self.encrypted_segment_cnt += 1; } Ok(pos) } /// Flushing an encrypting writer does nothing even when there is buffered plaintext, /// because only complete segments can be written. fn flush(&mut self) -> io::Result<()> { Ok(()) } } impl EncryptingWrite for Writer { fn close(&mut self) -> Result<(), TinkError> { if self.closed { return Ok(()); } let nonce = generate_segment_nonce( self.nonce_size, &self.nonce_prefix, self.encrypted_segment_cnt, /* last= */ true, ) .map_err(|e| wrap_err("internal error", e))?; let ciphertext = self .segment_encrypter .encrypt_segment(&self.plaintext[..self.plaintext_pos], &nonce)?; self.w .write_all(&ciphertext) .map_err(|e| wrap_err("write failure", e))?; self.plaintext_pos = 0; self.encrypted_segment_cnt += 1; self.closed = true; Ok(()) } } /// Manual [`Drop`] implementation which ensures the stream is closed. impl Drop for Writer { fn drop(&mut self) { let _ = self.close(); } } /// `SegmentDecrypter` facilitates implementing various streaming AEAD encryption modes. pub trait SegmentDecrypter { fn decrypt_segment(&self, segment: &[u8], nonce: &[u8]) -> Result<Vec<u8>, TinkError>; } /// `Reader` facilitates the decryption of ciphertexts created using a [`Writer`]. /// /// The scheme used for decrypting segments is specified by providing a /// [`SegmentDecrypter`] implementation. The implementation must align /// with the [`SegmentEncrypter`] used in the [`Writer`]. pub struct Reader { r: Box<dyn io::Read>, segment_decrypter: Box<dyn SegmentDecrypter>, decrypted_segment_cnt: u64, first_ciphertext_segment_offset: usize, nonce_size: usize, nonce_prefix: Vec<u8>, // `plaintext` holds data that has already been decrypted, and `plaintext_pos` // indicates the part of it that has not yet been returns from a `read` operation. plaintext: Vec<u8>, plaintext_pos: usize, // `ciphertext` is a fixed-size buffer that holds encrypted data that has already been read // from `r`. ciphertext: Vec<u8>, ciphertext_pos: usize, } /// `ReaderParams` contains the options for instantiating a [`Reader`] via `Reader::new()`. pub struct ReaderParams { // `r` is the underlying reader being wrapped. pub r: Box<dyn io::Read>, // `segment_decrypter` provides a method for decrypting segments. pub segment_decrypter: Box<dyn SegmentDecrypter>, // `nonce_size` is the length of generated nonces. It must match the `nonce_size` // of the [`Writer`] used to create the ciphertext, and must be somewhat larger // than the size of the common `nonce_prefix` pub nonce_size: usize, // `nonce_prefix` is a constant that all nonces throughout the ciphertext start // with. It's extracted from the header of the ciphertext. pub nonce_prefix: Vec<u8>, // The size of the ciphertext segments, equal to `nonce_size` plus the // size of the plaintext segment. pub ciphertext_segment_size: usize, // `first_ciphertext_segment_offset` indicates where the ciphertext actually begins // in `r`. This allows for the existence of overhead in the stream unrelated to // this encryption scheme. pub first_ciphertext_segment_offset: usize, } impl Reader { /// Create a new `Reader` instance. pub fn new(params: ReaderParams) -> Result<Reader, TinkError> { if params.nonce_size - params.nonce_prefix.len() < 5 { return Err("nonce size too short".into()); } match params .ciphertext_segment_size .checked_sub(params.first_ciphertext_segment_offset) { None => { return Err( "first ciphertext segment offset bigger than ciphertext segment size".into(), ) } Some(sz) if sz <= params.nonce_size => { return Err("first ciphertext segment not large enough for full nonce".into()) } _ => {} } Ok(Reader { r: params.r, segment_decrypter: params.segment_decrypter, decrypted_segment_cnt: 0, first_ciphertext_segment_offset: params.first_ciphertext_segment_offset, nonce_size: params.nonce_size, nonce_prefix: params.nonce_prefix, plaintext: vec![], plaintext_pos: 0, // Allocate an extra byte to detect the last segment. ciphertext: vec![0; params.ciphertext_segment_size + 1], // Offset of data in `ciphertext`. Only ever set to: // - 0 (for first segment), or // - 1 (for all subsequent segments). ciphertext_pos: 0, }) } } /// Extension trait for [`std::io::Read`] to support `read_full()` method. trait ReadFullExt { /// Read the exact number of bytes required to fill `buf`, if possible. /// /// This function reads as many bytes as necessary to completely fill the /// specified buffer `buf`. /// /// If this function encounters an error of the kind /// [`std::io::ErrorKind::Interrupted`] then the error is ignored and the /// operation will continue. /// /// If this function encounters an "end of file" before completely filling /// the buffer, it returns an `Ok(n)` value holding the number of bytes read /// into `buf`. /// /// If any other read error is encountered then this function immediately /// returns. The contents of `buf` are unspecified in this case. /// /// (This is similar to `Read::read_exact` except for partial read behaviour, /// and also behaves like Go's `io::ReadFull`, as used in the upstream Go code.) fn read_full(&mut self, buf: &mut [u8]) -> std::io::Result<usize>; } impl ReadFullExt for dyn std::io::Read { fn read_full(&mut self, mut buf: &mut [u8]) -> std::io::Result<usize> { let mut count = 0; while !buf.is_empty() { match self.read(buf) { Ok(0) => break, Ok(n) => { count += n; let tmp = buf; buf = &mut tmp[n..]; } Err(e) if e.kind() == std::io::ErrorKind::Interrupted => {} Err(e) => return Err(e), } } Ok(count) } } impl io::Read for Reader { // Read decrypts data from underlying reader and passes it to `buf`. fn read(&mut self, buf: &mut [u8]) -> io::Result<usize> { if self.plaintext_pos < self.plaintext.len() { // There is already-decrypted plaintext available -- return it first before attempting // any more decryption. let n = std::cmp::min(buf.len(), self.plaintext.len() - self.plaintext_pos); buf[..n].copy_from_slice(&self.plaintext[self.plaintext_pos..(self.plaintext_pos + n)]); self.plaintext_pos += n; return Ok(n); } // No available plaintext. self.plaintext_pos = 0; // Read up to a segment's worth of ciphertext. let mut ct_lim = self.ciphertext.len(); if self.decrypted_segment_cnt == 0 { // The first segment of ciphertext might be offset in the stream. ct_lim -= self.first_ciphertext_segment_offset; } let n = self .r .read_full(&mut self.ciphertext[self.ciphertext_pos..ct_lim])?; if n == 0 { // No ciphertext available, so therefore no plaintext available for now. return Ok(0); } let last_segment; let segment; if n != (ct_lim - self.ciphertext_pos) { // Read less than a full segment, so this should be the last segment. last_segment = true; segment = self.ciphertext_pos + n; } else { last_segment = false; if (self.ciphertext_pos + n) < 1 { return Err(io::Error::new( io::ErrorKind::InvalidInput, "ciphertext segment too short", )); } segment = self.ciphertext_pos + n - 1; } // Calculate the expected segment nonce and decrypt a segment. let nonce = generate_segment_nonce( self.nonce_size, &self.nonce_prefix, self.decrypted_segment_cnt, last_segment, )?; self.plaintext = self .segment_decrypter .decrypt_segment(&self.ciphertext[..segment], &nonce) .map_err(|e| io::Error::new(io::ErrorKind::InvalidInput, format!("{:?}", e)))?; // Copy 1 byte remainder to the beginning of `self.ciphertext`. if !last_segment { let remainder_offset = segment; self.ciphertext[0] = self.ciphertext[remainder_offset]; self.ciphertext_pos = 1; } self.decrypted_segment_cnt += 1; // A segment's worth of plaintext is now available in `self.plaintext`; // copy from this to the caller's buffer. let n = std::cmp::min(buf.len(), self.plaintext.len()); buf[..n].copy_from_slice(&self.plaintext[..n]); self.plaintext_pos = n; Ok(n) } } /// Return a nonce for a segment. /// /// The format of the nonce is: /// /// nonce_prefix || ctr || last_block. /// /// nonce_prefix is a constant prefix used throughout the whole ciphertext. /// /// The ctr is a 32 bit counter. /// /// last_block is 1 byte which is set to 1 for the last segment and 0 /// otherwise. fn generate_segment_nonce( size: usize, prefix: &[u8], segment_num: u64, last: bool, ) -> io::Result<Vec<u8>> { let segment_num = match u32::try_from(segment_num) { Ok(v) => v, Err(_) => { return Err(io::Error::new( io::ErrorKind::InvalidInput, "too many segments", )) } }; let mut nonce = vec![0; size]; nonce[..prefix.len()].copy_from_slice(prefix); let mut offset = prefix.len(); nonce[offset..offset + 4].copy_from_slice(&segment_num.to_be_bytes()[..]); offset += 4; if last { nonce[offset] = 1; } Ok(nonce) }